來(lái)源:網(wǎng)絡(luò)資源 2023-03-31 20:51:00
對(duì)稱(chēng)定理
定理:
線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
逆定理:
和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
定理1:
關(guān)于某條直線對(duì)稱(chēng)的兩個(gè)圖形是全等形
定理2:
如果兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
定理3:
兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱(chēng)軸上
逆定理:
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱(chēng)
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2025中考一路陪伴同行!>>點(diǎn)擊查看